Neutron activation of holmium poly(L-lactic acid) microspheres for hepatic arterial radioembolization: a validation study
نویسندگان
چکیده
Poly(L-lactic acid) microspheres loaded with holmium-166 acetylacetonate (166Ho-PLLA-MS) are a novel microdevice for intra-arterial radio-embolization in patients with unresectable liver malignancies. The neutron activation in a nuclear reactor, in particular the gamma heating, damages the 166Ho-PLLA-MS. The degree of damage is dependent on the irradiation characteristics and irradiation time in a particular reactor facility. The aim of this study was to standardize and objectively validate the activation procedure in a particular reactor. The methods included light- and scanning electron microscopy (SEM), particle size analysis, differential scanning calorimetry, viscometry, thermal neutron flux measurements and energy deposition calculations. Seven hours-neutron irradiation results in sufficient specific activity of the 166Ho-PLLA-MS while structural integrity is preserved. Neutron flux measurements and energy deposition calculations are required in the screening of other nuclear reactors. For the evaluation of microsphere quality, light microscopy, SEM and particle size analysis are appropriate techniques.
منابع مشابه
Novel 175Yb-Poly (L-lactic acid) microspheres for transarterial radioembolization of unrespectable hepatocellular carcinoma
Novel biodegradable Poly (L-lactic acid) (PLLA) microspheres containing ytterbium were designed for intra-tumoral radiotherapy, especially for radioembolization. 175Yb possess both therapeutic beta and diagnostic gamma radiations. In this work, process to make ready radiomicrospheres 175Yb(acac)3-loaded PLLA for more consideration has been investigated. The radiomicrospheres were prepared with ...
متن کاملNovel 175Yb-Poly (L-lactic acid) microspheres for transarterial radioembolization of unrespectable hepatocellular carcinoma
Novel biodegradable Poly (L-lactic acid) (PLLA) microspheres containing ytterbium were designed for intra-tumoral radiotherapy, especially for radioembolization. 175Yb possess both therapeutic beta and diagnostic gamma radiations. In this work, process to make ready radiomicrospheres 175Yb(acac)3-loaded PLLA for more consideration has been investigated. The radiomicrospheres were prepared with ...
متن کاملHolmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial
BACKGROUND Intra-arterial radioembolization with yttrium-90 microspheres ( 90Y-RE) is an increasingly used therapy for patients with unresectable liver malignancies. Over the last decade, radioactive holmium-166 poly(L-lactic acid) microspheres ( 166Ho-PLLA-MS) have been developed as a possible alternative to 90Y-RE. Next to high-energy beta-radiation, 166Ho also emits gamma-radiation, which al...
متن کاملLoading of Gentamicin Sulfate into Poly (Lactic-Co-Glycolic Acid) Biodegradable Microspheres
Objective: In dental treatments, use of carriers for targeted antibiotic delivery would be optimal to efficiently decrease microbial count. In this study, gentamicin was loaded into polylactic co-glycolic acid (PLGA) microspheres and its release pattern was evaluated for 20 days. Methods: In this experimental study, PLGA microspheres loaded with gentamycin were produced by the W/O/W method....
متن کاملPreparing Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres Containing Lysozyme-Zinc Precipitate Using a Modified Double Emulsion Method
Lysozyme, as a model protein, was precipitated through the formation of protein-Zn complex to micronize for subsequent encapsulation within poly (lactic-co-glycolic acid) (PLGA) microspheres. Various parameters, including pH, type and concentration of added salts and protein concentration, were modified to optimize the yield of protein complexation and precipitation. The resulting protein parti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical Microdevices
دوره 11 شماره
صفحات -
تاریخ انتشار 2009